Provides the latest software and hardware upgrade configuration powered by eXP technology: boosting productivity, increasing image quality, and adding new acquisition techniques.

EVOlution represents Esaote’s continuous improvement program which ensures **product and service enhancement** as well as increased customer satisfaction.

- Continuous improvement of performance, features, and services
- State-of-the-art technologies upgrading possibilities
- Maximized return on investment
- Augmented patient care
- Improved clinical workflow and patient throughput

Q-Spine
The next step in Spine Diagnosis

Q-Spine is a software tool for the comparison between WB and Recumbent MRI examinations. The semi-automatic detection of vertebra and spinal canal contours is used to visualize and quantify the differences between WB and Recumbent MRI.
Software and Hardware Upgrade

Discover the new features which are part of the EVOlution upgrade for MRI. All features are built on a new advanced hardware platform based on Graphic Processing Unit (GPU) technology, boosting MRI performance.

Dynamic Contrast Enhanced MRI (DCE-MRI)

Contrast media uptake is an important indication of disease activity for several MSK pathologies.

EVOlution introduces a new method based on the use of color maps for performing the contrast media uptake analysis. This new approach is intuitive and operator-independent in the calculation and visualization of uptake curves.

evo 3D

Represents the next step in terms of isotropic 3D sequences.

Reduces the voxel size enabling incredibly high resolution Multi-Planar-Reconstruction (MPR).

In combination with Speed-Up Pro, allows for a 50% reduction in scan time in a single acquisition.

Evo 3D comprises an advanced viewer for realtime and curved MPR.

Evo 3D will improve the overall workflow.

MAR

MAR sequences facilitate imaging both of patients with metallic implants and postoperative MRI scans.

Uses a sophisticated gradient management technique to reduce in-plane distortions due to metal implants.

Speed-Up PRO

Sophisticated acquisition and reconstruction method developed for the new generation of Esaote Dedicated MRI systems. Superior quality images can now be produced from substantially reduced scan times.

Gives you the flexibility to combine quality and productivity in the same sequence.
The G-scan Brio is a revolutionary MRI approach for all musculoskeletal applications, which, combined with the new EVOlution upgrade, increases diagnostic accuracy and confidence.

The open and tilting design is the new and innovative way of performing an MRI in which the position of the patient becomes an integral part of the exam outcome.

G-scan Brio: The Key to Confidence

The G-scan Brio is a revolutionary MRI approach for all musculoskeletal applications, which, combined with the new EVOlution upgrade, increases diagnostic accuracy and confidence.

The open and tilting design is the new and innovative way of performing an MRI in which the position of the patient becomes an integral part of the exam outcome.
Quantification:
- Vertebral wedging
- Listhesis index
- Intervertebral translation
- Intervertebral angle
- Spine section
- Spine thickness
- Spine curvature
- Vertebral collapse
S-scan: The Next Step in MRI

The S-scan dedicated MRI scanner represents the latest development of Esaote's technology in MRI. It is perfectly in line with today's need for efficient and economic health care, and is a sensible choice for any imaging center with a substantial musculoskeletal workload. S-scan, combined with EVOlution, allows users to increase productivity and optimize workflow, whilst retaining excellent image quality.
O-scan: Taking Pride in Performance

O-scan, the ‘star performer’ in terms of MRI for extremities, meets the need for higher throughput in radiological settings and orthopedic practices. An O-scan works well as an accompaniment to whole body scanners, helping to free up the latter for major clinical cases. O-scan also significantly improves the patient experience. The EVOlution upgrade can be relied upon to enhance the performance of the O-scan in terms of spatial resolution and scanning time.