MRI: **Good to Know**

SPED
Spin Echo Dixon (SPED) for Dedicated MRI
Introduction

Fat-water separation using the Dixon method can be achieved by applying a Spin Echo or Gradient Echo sequence. Both sequences have their own peculiarities: while the Gradient Echo potentially is the faster between these sequences, the Spin Echo is more robust and less prone to artefacts.

The new Esaote Spin Echo Dixon or SPED is, like the name says, a Spin Echo variation of the existing Esaote Gradient Echo Dixon technique XBone, taking advantage of the same chemical shift effect.

How it works

The SPED sequence is a Spin Echo type sequence with two echoes, in which the echo times are determined automatically by the software according to the resonance frequency and the chemical shift between water and fat to generate two images in which the water and fat signals are respectively in phase and in counter phase.

The subsequent data processing creates the two images containing respectively only the fat signal and only the water signal, obtaining the desired water/fat separation.
Figure 5: SPED PD, Fat Suppression - Meniscal Tear, TR = 1600 ms

Figure 6: SPED PD, Fat Suppression - Radius Fracture, TR = 2000 ms

Figure 7: SPED PD, Fat Suppression - Bone Oedema, TR = 1800 ms

Figure 8: SPED PD, Fat Suppression, TR = 1800 ms

Figure 9: SPED PD, Fat Suppression - Posterior Tibial Edema, TR = 1500 ms

Figure 10: SPED T1, Fat Suppression, TR = 480 ms

Figure 11: SPED PD, Fat Suppression - Metal Implant, TR = 1300 ms

Figure 12: SPED PD, Fat Suppression - TR = 1500 ms

All images, courtesy of our customers