“Intraoperative ultrasound is essential for planning the type of resection and for guiding surgeon’s hands in real time during liver parenchyma dissection. This is relevant for the effectiveness and safety of surgical treatments.”

Guido Torzilli, MD, PhD, FACS, Ultrasound-Guided Liver Surgery, an Atlas, 2014

Esaote offers a complete range of ultrasound systems and innovative T-shape intra-operative probe to maximize performance in surgery procedures.

Innovative T-shape intra-operative probe IOT342 offers:
- High Quality B-Mode Imaging
- High sensitivity Color Doppler and XFlow
- ElaXto to evaluate tissue’s elasticity
- CnTI™ to perform contrast-enhanced exams

Clinical targets:
- Detection, localization and characterization of the lesions
- Mapping of the vascular path
- Planning of the most convenient surgical approach

MyLabTwice
Premium cart-based ultrasound with latest advanced technologies and Virtual Navigator™ for Fusion Imaging.

MyLabAlpha
Superb performances and unparalleled technologies in a compact portable solution.

MyLabOne
High performance and a wide range of probes in a touch-screen solution.
MyLab™Remote can be installed on your iPad and includes a virtual keyboard to remotely operate the ultrasound system. MyLab™Remote can be used with sterile covers for easy and efficient workflow.

Making surgery more easy and effective: Visualize, Characterize, Plan

TEI, XView+ and MView improve the image quality by reducing the speckle noise and artefacts, which can be particularly strong in an intraoperative setting.

XFlow allows extraordinary flow sensitivity and spatial resolution to clearly map the organ’s vascularization.

CnTI™ (Contrast Tuned Imaging) Esaote’s technology for CEUS exams, allows detection and characterization of the lesions.

ElaXto provides lesion stiffness for characterization and accuracy in the identification of lesions. ElaXto provides also a set of dedicated measures and raw data export.

Virtual Navigator with Fusion Imaging is the new cutting edge modality approach; by combining CT, MRI, PET imaging with real-time ultrasound, morphological and functional information can be clearly displayed.