Most dermatologists are not fully aware of the many useful possibilities that ultrasound offers in the clinical practice. Here are some examples of its practical applications sorted by skin pathology as well as a short overview of how ultrasound works along with a description of which devices are suitable for skin ultrasound (Fig. 1).

Inflammatory skin diseases

Regardless of the cause producing echogenic effects, ultrasound characterises inflammatory skin diseases with the following features:

- view of a subepidermal hypoechoic halo displaying a papillary dermal edema
- local blood flow increase, displayed by increased Doppler signal
- homogenization of cellular tissue in the event of subcutaneous cellulites or an usual reversed response to ultrasound, hypoechoic lobules become hyperechoic and hypoechoic walls become hyperechoic.

Ultrasound allows us to determine to what extent bacterial skin infections have spread to deeper skin layers (fasciitis, osteomyelitis) and to detect and guide abscess drainage. This technique allows us to detects hyperkeratosis within the epidermis, inflammation of the underlying tissue as well as increased blood flow in viral warts and these parameters can be viewed and measured to guide us in selecting the most the appropriate treatment also in the event of persistent viral warts.

Detecting the inflammatory stage or the inactive/scar stage of skin inflammations produced by autoimmune diseases is crucial to determine patient’s treatment. During the inflammatory stage, lupus or morphea plaques exhibit inflamed skin characteristics (epidermal dermal interface hypoechogenicity, coupled with increased local blood flow Doppler measurements) while during the scar stage you will witness dermal and hypodermis hyperechogenicity due to sclerosis and panniculus decrease with fat atrophy.

Ultrasound detects inflammatory skin characteristics along with hyperkeratosis also for psoriasis. Inflammation’s response to treatment can be measured based on this ultrasound data to quantify specific, systemic and organic drugs response.

Skin Cancer

Ultrasound provides us with information regarding malignant tumours and benign lesions’ penetration as well as the involvement of secondary structures and/or locoregional metastasis. Ultrasound increases sensitivity and specificity of subcutaneous benign tumours’ clinical diagnostics.

In the event of malformations and vascular tumours, ultrasound allows us to differentiate lesions with increased blood flow from those with low blood flow thereby allowing us to adjust the initial diagnosis.

Ultrasound supports clinical diagnosis and local staging of epithelial tumours, helping us detect tumour borders for complete excision or according to Mohs’ surgery.

It is also useful to monitor cryotherapy or photodynamic therapy treatments, as well as epithelial neoplasms early recurrence.

The usefulness of ultrasound to evaluate and follow-up melanoma is widely recognized to the extent that some teams regard its use as routine. Ultrasound differentiates melanomas with a Breslow thickness greater than one mm and enables early detection of metastases regional sites. For widespread pathologies, ultrasound is also useful to measure melanoma metastasis' response to chemotherapy (Fig. 2).
Nail diseases

The evaluation of nail’s health conditions with skin ultrasound allows us to observe pathologies that are located under the nail plate without the need to surgically remove it and to quantify subungual exostosis and nail tumours that sometimes may not be defined radiologically (Fig. 3).

Nail psoriasis is characterized by altered ventral nail plate ultrasound feedback, which can help us differentiate it from onychomycosis and allows us to monitor treatment’s response.

Cosmetic dermatology

Dermatologists’ interest for this diagnostic technique was renewed by its medical aesthetics applications.

Cosmetic fillers display a set of sonographic patterns that allow us to detect and identify which type of filler was used and help us in the event of complications with these agents.

Skin aging assessment through sub-epidermal hypoechoic halo analysis is another useful ultrasound application since its thickness increases with photo-aging. Ultrasound is also used to assess skin’s response to treatments such as laser, mesotherapy or photodynamic therapy (Fig. 4).

How ultrasound works and which devices are suitable for skin ultrasound

Ultrasounds are sound waves with non-audible frequencies above 20,000 Hz generated by crystals which have the ability to emit these waves in response to an electrical stimulus and to convert the reflected echo of these ultrasounds into electrical signals, this is known as piezoelectric effect.
Piezoelectric crystals, which are located in transducers or probes, emit electrical signals into the processing unit. This unit converts electrical signals into greater or lesser intensity points on a screen (B Mode image).

B Mode images represent a longitudinal or transverse line based on probe’s orientation with respect to the structure being examined.

The greater the frequency of the ultrasound, the lower is its ability to penetrate the tissue and the greater is the ability to distinguish echoes from adjacent structures (resolution).

In dermatology, we are interested in surface structures and very high resolution to discriminate echoes. High frequency (above 7.5 MHz) wideband probes are therefore the most suitable transducers, since they supply us with the flexibility to study structures at different depths. Examination probes must be linear ones, as we are interested in structures which are parallel to the body’s surface.

Esaote has provided worldwide high performance MSK ultrasound solutions for many years, pioneered ultrasound imaging availability up to 18 MHz high frequencies also on portable systems. The capability to enhance power Doppler frequency range up to 14.3 MHz also delivers incredible sensitivity for extremely low flows detection.

At EUROSON 2012, Esaote was also pleased to announce a new innovation in superficial ultrasound imaging, further increasing resolution with a new probe delivering an exceptional 15–22 MHz bandwidth.

Since ultrasound waves are greatly attenuated when transmitted through air, a gel or a stand-off must be placed between the skin and the transducer to facilitate transmission. Unlike conventional ultrasound, skin ultrasound assesses surface structures and is performed by slightly positioning the transducer on the gel placed over the skin, without applying pressure.

Conclusion

Skin ultrasound is a powerful, non-invasive, cost-effective and real-time technique that improves your daily practice when diagnosing, treating and monitoring skin tumours, vascular tumours, skin inflammatory diseases, nail lesions and cosmetic procedures.

References

Esaote S.p.A.

International Activities: Via di Caciolle 15 - 50127 Florence, Italy - Tel. +39 055 4229 1 - Fax +39 055 4229 208 - international.sales@esaote.com - www.esaote.com

Domestic Activities: Via A. Siffredi, 58 16153 Genoa, Italy, Tel. +39 010 6547 1, Fax +39 010 6547 275, info@esaote.com

Products and technologies included in the document might be not yet released or not approved in all the countries.