Introduction

One of the most important elements in the cardiologist’s clinical routines is to get precise assessment of cardiac kinetics. This assessment is done by means of a combination of standard measurements like LV EF, Volumes, myocardial velocities etc. and qualitative evaluations that contribute to the final diagnosis.

At Esaote we are striving to provide truly innovative solutions to assist the cardiologist in achieving the most accurate and immediate diagnosis.
Chambers quantification
The modern approach in echocardiography includes basic and advanced modalities to help to increase diagnostic confidence.
Systolic & diastolic function

The modern approach in echocardiography includes different basic and advanced modalities that helps to increase diagnostic confidence.
Hemodynamics & valve assessment
The modern approach in echocardiography includes different basic and advanced modalities that helps to increase diagnostic confidence.
Wall motion score analysis

The modern approach in echocardiography includes different basic and advanced modalities that helps to increase diagnostic confidence.
Cardiac Mechanics

Echocardiographic imaging is ideally suited for the evaluation of cardiac mechanics because of its intrinsically dynamic nature.

Two techniques have dominated the research arena of echocardiography:
1. Doppler-based tissue velocity mapping
2. Speckle tracking on the basis of displacement measurements.

In systole, there is longitudinal shortening, transmural (Radial) thickening and circumferential shortening.

Tissue Velocity Mapping (TVM)

Tissue Doppler velocity estimation is based on the same principles as pulsed-wave and color Doppler echocardiography for blood flow. The major strength of DTI is that it is readily available and allows objective quantitative evaluation of local myocardial dynamics. The major weakness of DTI is its angle dependency, as any Doppler-based methodology can by definition only measure velocities along the ultrasound beam, while velocity components perpendicular to the beam remain undetected.

![Tissue velocity mapping approach (doppler based method)](http://folk.ntnu.no/stoylen/strainrate)
Tissue Velocity Mapping (TVM)

Tissue Doppler velocity estimation is based on the same principles as pulsed-wave and color Doppler echocardiography for blood flow. The major strength of DTI is that it is readily available and allows objective quantitative evaluation of local myocardial dynamics. The major weakness of DTI is its angle dependency, as any Doppler-based methodology can by definition only measure velocities along the ultrasound beam, while velocity components perpendicular to the beam remain undetected.

Tissue velocity mapping approach (doppler based method)
Tissue Velocity Mapping (TVM)

Tissue Doppler velocity estimation is based on the same principles as pulsed-wave and color Doppler echocardiography for blood flow. The major strength of DTI is that it is readily available and allows objective quantitative evaluation of local myocardial dynamics. The major weakness of DTI is its angle dependency, as any Doppler-based methodology can by definition only measure velocities along the ultrasound beam, while velocity components perpendicular to the beam remain undetected.

Tissue velocity mapping approach (doppler based method)
Speckle Tracking Echocardiography

STE is a largely angle-independent technique used for the evaluation of myocardial function. Blocks or kernels of speckles can be tracked from frame to frame and provides local displacement information, from which parameters of myocardial function such as velocity, strain, and strain rate can be derived. STE has the advantage of being able to measure this motion in any direction within the image plane (longitudinal, radial and circumferential components).

Speckle tracking method (2D STE)

Click to enlarge
Speckle Tracking Echocardiography

STE is a largely angle-independent technique used for the evaluation of myocardial function. Blocks or kernels of speckles can be tracked from frame to frame and provides local displacement information, from which parameters of myocardial function such as velocity, strain, and SR can be derived. STE has the advantage of being able to measure this motion in any direction within the image plane (longitudinal, radial and circumferential components).

Incremental diagnostic yield in echocardiography
XStrain

An angle-independent imaging method to estimate and quantify endocardial velocities of contraction and relaxation, and estimate and quantify local deformation of the heart (strain and strain rate).

Regional myocardial strain rate and strain can detect inducible ischemia at earlier stages than visual estimation of wall motion or wall thickening parameters.

In the heart, the usual directions are longitudinal, transmural and circumferential as shown to the left.

The cylinder shows strain (compression along its long axis), which can be described as Lagrangian strain from L_0 to L. However, the figure also shows simultaneous thickening or expansion in the two transverse directions.

Reproduced with permission from: http://folk.ntnu.no/stoylen/strainrate
Clinical outcomes of XStrain

- Segmental values of different parameters (velocity, strain, strain rate, displacement)
- Longitudinal, circumferential, and radial assessment of the heart’s wall motion
- Time analysis to identify desynchronization and perform CRT
Clinical outcomes of XStrain

- Segmental values of different parameters (velocity, strain, strain rate, displacement)
- Longitudinal, circumferential, and radial assessment of the heart’s wall motion
- Time analysis to identify desynchronization and perform CRT
Clinical outcomes of XStrain

- Segmental values of different parameters (velocity, strain, strain rate, displacement)
- Longitudinal, circumferential, and radial assessment of the heart’s wall motion
- Time analysis to identify desynchronization and perform CRT

Circumferential strain/strain rate
Clinical outcomes of XStrain

- Segmental values of different parameters (velocity, strain, strain rate, displacement)
- Longitudinal, circumferential, and radial assessment of the heart’s wall motion
- Time analysis to identify desynchronization and perform CRT

Automatic Time to Peak calculation, suited for pre and post CRT procedures
Advantages of XStrain

- Precise quantification of all kinetics-related parameters and objective diagnoses
- Global representation of segmental values to quickly identify regional defects and perform reliable follow up
- Totally integrated in the patient report

Global strain values
Advantages of XStrain

- Precise quantification of all kinetics related parameter and objective diagnosis
- Global representation of segmental values to quickly identify regional defects and perform easily follow-up
- Totally integrated in the patient report

Parametric image & auto calculation
Advantages of XStrain

- Precise quantification of all kinetics related parameter and objective diagnosis
- Global representation of segmental values to quickly identify regional defects and perform easily follow-up
- Totally integrated in the patient report
XStrain 4D

XStrain 4D is a brand new technology which provides a volumetric model of the heart’s function by combining 2D apical planes acquisition using a standard transducer.

XStrain 4D improves diagnostic quality and can easily be incorporated into the daily routine.
Clinical outcomes of XStrain 4D

- Overall assessment of the LV function and quantification of the Global parameters like Strain/Strain rate, velocities, volume, segmental displacement and time to peak.
- Volumetric rendering including segmental values and bull’s eye representation
- Detailed systolic and diastolic analysis of any single segment based on specific graphs

Longitudinal strain
Clinical outcomes of XStrain 4D

• Overall assessment of the LV function and quantification of the Global parameters like Strain/Strain rate, velocities, volume, segmental displacement and time to peak.

• Volumetric rendering including segmental values and bull’s eye representation

• Systolic and diastolic detailed analysis of any single segment of any single segment based on dedicated graphs
Clinical outcomes of XStrain 4D

- Overall assessment of the LV function and quantification of the Global parameters like Strain/Strain rate, velocities, volume, segmental displacement and time to peak.
- Volumetric rendering including segmental values and bull’s eye representation
- Systolic and diastolic detailed analysis of any single segment of any single segment based on dedicated graphs

Longitudinal velocity

Click to enlarge
Clinical outcomes of XStrain 4D

- Overall assessment of the LV function and quantification of the Global parameters like Strain/Strain rate, velocities, volume, segmental displacement and time to peak.
- Volumetric rendering including segmental values and bull’s eye representation
- Systolic and diastolic detailed analysis of any single segment of any single segment based on dedicated graphs
Clinical outcomes of XStrain 4D

• Overall assessment of the LV function and quantification of the Global parameters like Strain/Strain rate, velocities, volume, segmental displacement and time to peak.

• Volumetric rendering including segmental values and bull’s eye representation

• Systolic and diastolic detailed analysis of any single segment of any single segment based on dedicated graphs

Strain rate
Clinical outcomes of XStrain 4D

- Overall assessment of the LV function and quantification of the Global parameters like Strain/Strain rate, velocities, volume, segmental displacement and time to peak.
- Volumetric rendering including segmental values and bull’s eye representation
- Systolic and diastolic detailed analysis of any single segment of any single segment based on dedicated graphs
Advantages of XStrain 4D

- Simplifies the overall data interpretation making the final diagnosis quicker
- Works with a very high temporal resolution
- No need for expensive special probes or special image acquisition training
- Based on the acquisition of the standard apical echo planes

The principle of Bull’s eye projection (Left Ventricle)
Reproduced with permission from: http://folk.ntnu.no/stoylen/strainrate
Advantages of XStrain 4D

- Simplifies the overall data interpretation making the final diagnosis quicker
- Works with a very high temporal resolution
- No need of expensive tools and special training
- Based on the acquisition of the standard apical echo planes
Advantages of XStrain 4D

- Simplifies the overall data interpretation making the final diagnosis quicker
- Works with a very high temporal resolution
- No need of expensive tools and special training
- Based on the acquisition of the standard apical echo planes

3D assessment of the myocardial velocities
Advantages of XStrain 4D

- Simplifies the overall data interpretation making the final diagnosis quicker
- Works with a very high temporal resolution
- No need of expensive tools and special training
- Based on the acquisition of the standard apical echo planes
Advantages of XStrain 4D

- Simplifies the overall data interpretation making the final diagnosis quicker
- Works with a very high temporal resolution
- No need of expensive tools and special training
- Based on the acquisition of the standard apical echo planes

LCX coronary territory
Advantages of XStrain 4D

- Simplifies the overall data interpretation making the final diagnosis quicker
- Works with a very high temporal resolution
- No need of expensive tools and special training
- Based on the acquisition of the standard apical echo planes
Advantages of XStrain 4D

- Simplifies the overall data interpretation making the final diagnosis quicker
- Works with a very high temporal resolution
- No need of expensive tools and special training
- Based on the acquisition of the standard apical echo planes

<table>
<thead>
<tr>
<th>SEGMENT</th>
<th>VALUE (%)</th>
<th>GLOBAL MAX DELAY</th>
<th>TIME TO VALUE (ms)</th>
<th>DELAY (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-BAS ANT</td>
<td>-20.79 %</td>
<td>361</td>
<td>381</td>
<td>20</td>
</tr>
<tr>
<td>2-BAS ANT SEP</td>
<td>-24.71 %</td>
<td>306</td>
<td>361</td>
<td>20</td>
</tr>
<tr>
<td>3-BAS POST</td>
<td>-11.6 %</td>
<td>280</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>6-BAS LAT</td>
<td>-13.91 %</td>
<td>280</td>
<td>361</td>
<td>20</td>
</tr>
<tr>
<td>3-BAS SEP</td>
<td>-15.4 %</td>
<td>280</td>
<td>361</td>
<td>20</td>
</tr>
<tr>
<td>GLOBAL BASAL LEVEL</td>
<td>-17.53 %</td>
<td>361</td>
<td>361</td>
<td>0</td>
</tr>
<tr>
<td>7-MID ANT</td>
<td>-18.8 %</td>
<td>361</td>
<td>361</td>
<td>0</td>
</tr>
<tr>
<td>10-MID INF</td>
<td>-20.13 %</td>
<td>361</td>
<td>361</td>
<td>0</td>
</tr>
<tr>
<td>8-MID ANT SEP</td>
<td>-18.97 %</td>
<td>361</td>
<td>361</td>
<td>0</td>
</tr>
<tr>
<td>11-MID POST</td>
<td>-12.08 %</td>
<td>361</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>12-MID LAT</td>
<td>-9.38 %</td>
<td>361</td>
<td>361</td>
<td>0</td>
</tr>
<tr>
<td>9-MID SEP</td>
<td>-14.08 %</td>
<td>361</td>
<td>361</td>
<td>0</td>
</tr>
<tr>
<td>GLOBAL MID LEVEL</td>
<td>-15.57 %</td>
<td>361</td>
<td>361</td>
<td>0</td>
</tr>
<tr>
<td>13 - APIC ANT</td>
<td>-21.46</td>
<td>320</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>15 - APIC INF</td>
<td>-21.83</td>
<td>320</td>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>16 - APIC LAT</td>
<td>-13.26</td>
<td>320</td>
<td>340</td>
<td>0</td>
</tr>
<tr>
<td>14 - APIC SEP</td>
<td>-20</td>
<td>320</td>
<td>340</td>
<td>0</td>
</tr>
<tr>
<td>17 - APEX</td>
<td>-24.23 %</td>
<td>320</td>
<td>320</td>
<td>40</td>
</tr>
<tr>
<td>GLOBAL APICAL LEVEL</td>
<td>-20.16</td>
<td>361</td>
<td>361</td>
<td>40</td>
</tr>
</tbody>
</table>

XStrain 4D Dedicated report
Advantages of XStrain 4D

- Simplifies the overall data interpretation making the final diagnosis quicker
- Works with a very high temporal resolution
- No need of expensive tools and special training
- Based on the acquisition of the standard apical echo planes
Bibliography

- Early Identification of Cardiovascular Involvement in Patients With β-Thalassemia Major.
- New concept of myocardial longitudinal strain reserve assessed by a dipyridamole infusion using 2D-strain echocardiography: the impact of diabetes and age, and the prognostic value
- Cognet T, Vervueren PL et al., Cardiovasc Diabetol. 12:84.(7 June 2013) doi: 10.1186/1475-2840-12-84
- Role of 2D strain in the early identification of left ventricular dysfunction and in the risk stratification of systemic sclerosis patients
- Role of 2D strain in the early identification of left ventricular dysfunction and in the risk stratification of systemic sclerosis patients
- Evaluation of atrial function by 2D strain echocardiography in patients with atrial fibrillation
- Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications Endorsed by the Japanese Society of Echocardiography
- Published on behalf of the European Society of Cardiology. This article has been co-published in the Journal of the American Society of Echocardiography. European Journal of Echocardiography (2011) 12, 167–205 doi:10.1093/eurheartj/erj021
- Early subclinical increase in pulmonary water content in athletes performing sustained heavy exercise at sea level: ultrasound lung comet-tail evidence
- The effect of Exercise Training on Left Ventricular Function in young elite athletes.
- Endocardial and Epicardial Deformations in Cardiac Amyloidosis and Hypertrophic Cardiomyopathy: a 2D Feature Strain Echocardiographic
- Gianluca Di Bella, M.D PhD et al., Circulation Journal, 2011,March EPUB [ahead of print] Online ISSN : 1347-4820
- Impact of prolonged cardiac unloading on left ventricular mass and longitudinal myocardial performance: an experimental bed rest study in humans
- Kozàkovà, Michaela et al., Journal of Hypertension, Volume 29 (1): 137-143, 2011 January
- Myocardial deformation in acute myocarditis with normal left ventricular wall motion.
- Gianluca Di Bella, M.D PhD et al., Circulation Journal, June 2010, Vol.74: 1205-1213 ISSN:1346-9843ONLINE ISSN 1347-4820
- Semiautomatic Quantification of Left Ventricular Function by 2D Feature Tracking Imaging Echocardiography. A Comparison Study with Cardiac Magnetic Resonance Imaging
- Gianluca Di Bella, M.D PhD et al., ECHOCARDIOGRAPHY 2010 Aug; 27 (7): 791-799,
- Interventricular Delay Optimization: A Comparison among Three Different Echocardiographic Methods
- Application of Xstrain in the evaluation of heart function in children with tonsil adenoidal hypertrophy
- A new 2D-based method for myocardial velocity strain and strain rate quantification in a normal adult and paediatric population: assessment of reference values.
- C. Bussadori MD PhD et al., Cardiovascular Ultrasound 2009, 7:8 February 13, 2009 ISSN 1476-7120
- Speckle tracking for left ventricle performance in young athletes with bicuspid aortic valve and mild aortic regurgitation
- Ventricular Dyssynchrony at Echo: Detection by Two-Dimensional Tracking and Tissue Doppler Imaging in Candidates to Biventricular Pacing
- Strain Bidimensional (X-Strain): utilização do método para avaliação de cardiopatias.Two-dimensional Strain (X-Strain): use of the method for cardiomyopathies assessment
- José M. Del CASTILLO et al., Revista Brasileira de Ecocardiografia 21 (3): 29 - 35, 2008 - ISSN 0103-3395
- Supernormal functional reserve of apical segments in elite soccer players : an ultrasound speckle tracking hand-grip stress study
- Laura Stefani et al., Cardiovascular Ultrasound 2008, 6:14 (April 2008)
Esaote S.p.A.
Via di Caciolle, 15 50127 Florence, Italy, Tel. +39 055 4229 1, Fax +39 055 4229 208, international.sales@esaote.com
Via A. Siffredi, 58 16153 Genoa, Italy, Tel. +39 010 6547 1, Fax +39 010 6547 275, info@esaote.com

FRANCE
Esaote Medical
ZA du Bel Air 10, rue de Témara,
78105 Saint-Germain-en -Laye
Tel. +33 1 8204 8900, Fax +33 1 3061 7210
info@esaote.fr

BRASIL
Brasilian Direct Office
Rua Tomas Carvalhal, 711
04006-001 São Paulo SP
Tel. +55 11 2589 0533 Fax +55 11 2589 0527
leonardo.pili@esaote.com.br

GERMANY
Esaote Biomedica Deutschland GmbH
Max-Plank-Straße 27a
50858 Köln
Tel. +49 2234 688 5600, Fax +49 2234 967 9628
info@esaote.de

ARGENTINA
Esaote Latinoamérica S.A.
San Martín 551, Cuerpo ‘C’, Piso 8, (C1004AAK)
Buenos Aires
Tel. +54 11 4326 1832, Fax: +54 11 4328 1245
info@esaote.com.ar

SPAIN
Esaote España S.A.
C/ Pont Reixat, 5
08960 Sant Just Desvern, Barcelona
Tel. +34 93 473 2090, Fax +34 93 473 2042
info@esaote.es

INDIA
Esaote Asia Pacific Diagnostic Private Limited
DLF IT Park, A - 44 & 45, Tower- C, Ground Floor,
Sector–62, Noida, Uttar Pradesh, India
Pin Code: 201 301
Tel. +91 120 4732444, Fax +91 120 4750148
info@esaote.in

THE NETHERLANDS AND BELGIUM
Esaote Benelux B.V.
Philipsweg 1
6227 AJ Maastricht
Tel. +31 43 3824650, Fax +31 43 3824651
benelux@esaote.nl

HONG KONG AND FAR EAST
Esaote China Ltd
18/F, 135 Bonham Strand Trade Centre,
135 Bonham Strand, Sheung Wan, Hong Kong
Tel. +852 2545 8386, Fax +852 2543 3068
esaote@esaotechina.com

UK
Esaote UK
14, Cambridge Science Park
Milton Road, Cambridge, CB4 0FQ
Tel. +44 1223 424499, Fax +44 709 288 0231
infoUK@esaote.com

CHINA
Esaote Shenzhen Medical Equipment
Room 2608, Tower B
Beijing Global Trade Center
36 North Third Ring Road East,
Dongcheng District, 100013, Beijing
Tel. +86 010 58257766, Fax +86 010 52257760

NORTH AMERICA
Esaote North America
8000 Castleway Drive,
Indianapolis, IN 46250
Tel. +1 317 813 6000, Fax +1 317 813 6600
inquire@esaoteusa.com

RUSSIAN FEDERATION AND CIS
Esaote S.p.A.
18 Leningradsky prospekt
Off. 5 and 6, Moscow 125040
Tel. +7 495 232 0205, Fax +7 495 232 1833
esaotemoscow@yandex.ru

Technology and features are system/configuration dependent. Specifications subject to change without notice. Information might refer to products or modalities not yet approved in all countries. For further details, please contact your Esaote sales representative.